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Executive Summary

 Near-memory processing concept is around for two decades
v'EXECUBE’94, IRAM’97, ActivePages’98, FlexRAM’99, DIVA’99, SmartMemories’00, ...

* Question: Why it is not commercialized yet?
v'Significant changes is required in applications or processor architecture

v'Industry resists to such changes

 Solution: Near memory processing using Memory Channel Network (MCN)
v'Robust: no change required in the host processor architecture

v’ Application-Transparent: no change required in the application
v'Scalable: seamless integration with distributed computing frameworks

* Implementation of the MCN HW/SW components on an experimental near-
memory platform and a full-system simulator shows:

v Feasibility of the proposal
v'Performance/power improvements: 8.17x higher aggregate DRAM bandwidth
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Big-Data Processing

* Big-Data processing model: single node vs. distributed computing
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How to reduce inter-node communication?

* Near-data processing?
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How to reduce inter-node communication?

* Near-data processing?
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How to reduce inter-node communication?

* Near-data processing?
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v’ Lesser nodes can process the same amount of data
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Memory Channel Network
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Memory Channel Network

* Unify near-memory processing within a server and distributed computing
across servers

e Application Transparent
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* MCN Architecture
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Background: Buffered DRAM Module

* Employ a buffer per DIMM to
reduce capacitive load

v'Centaur DIMM
e 16 MB eDRAM, L4 cache

* Memory management logic

*f 'I'q

rfav:es e
I'.I

16MB
Scheduler & Memory POWERS

Management Cache Link

DRAM Chips:

* DDR-DMI interfaces - 16GE =40 DRAM Chips

« 32GB = 80 DRAM Chips
« 54GB = 80 DRAM Chips

2B read 16 MiB DRAM Seq D?ﬁM
w 1B+CMD write| | eDRAM L4 Read Queue DP{AM
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MCN Design Overview
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MCN Design Overview
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MCN Design Overview
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MCN Design Overview

MCN distributed computing
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MCN Design Overview

MCN distributed computing
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Transcending Limitation of DIMMs

* DRAM device connected to MCN processor is electrically disconnected from
global/shared memory channel

v Aggregate memory bandwidth scales with #MCN DIMMs

Local/Private Channels
1
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MCN DIMM Architecture

MCN Processor

core core core core
1 2
global 0 3

DDR .
channel LLC / interconnect
control
TX
RX

local DRAM

<

Q
o
(1)
Y
| -
Q
)
§=
o
QO
Qo

MCN Architecture



<

MCN DIMM Architecture

global
DDR
channel

MCN Processor

core [ | core [ | core [ |core
0 1 2 3

LLC / interconnect
control
TX
RX

local DRAM

Q
o
(1)
Y
| -
Q
)
§=
o
QO
Qo

MCN buffer layout

26

< 64 Bytes >
0 4 8 12 63
Tx-head | Tx-tail | Tx-poll reserved
Rx-head| Rx-tail | Rx-poll reserved
Tx circular buffer > 48KB
Rx circular buffer - 48KB
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MCN Hardware/Software Architecture
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MCN Hardware/Software Architecture
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MCN Hardware/Software Architecture
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MCN Packet Routing

* MCN = Host
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MCN Packet Routing

* MCN = Host
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1. MCN DIMM writes Ethernet Packet to
its SRAM buffer and set RX-poll bit
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MCN PaCket Routing 2. Polling agent from the host recognize
the RX-poll bit is set and read the

* MCN - Host incoming packet
application 1 user space host
TX l T RX
A 2
linux network stack o =
U | D
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MCN PaCket Routing 3. Forwarding engine checks the MAC

address and determine the destination

* MCN - Host
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MCN PaCket Routing 4. If this is for the host, it copies the
Ethernet packet to the host SKB which

* MCN - Host ends up in the host DRAM
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MCN PaCket Routing 4. If this is for the host, it copies the
Ethernet packet to the host SKB which

* MCN - Host ends up in the host DRAM
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MCN PaCket Routing 5. Now finally the packet is passed to the
host network stack (e.g. TCP/IP)

* MCN - Host
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MCN Packet Routing

* Host 2 MCN
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MCN PaCket Routing 1. Packet is passed from the host network
stack and the packet goes to the

* Host 2 MCN corresponding Ethernet device
application 1 user space host
TX l T RX
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2. If the packet was send to the MCN

DIMM, the packet is passed to the

* Host 2 MCN forwarding engine to check the MAC
application 1 user space host
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MCN Packet Routing 3. If the MAC matches with one of the
host’s MCN DIMMs, the Ethernet

* Host 2 MCN packet is copied to the MCN DIMM
application 1 user space host
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MCN Packet Routing
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4. This data copy fires IRQ from the MCN

DIMM and MCN processor knows there

is an incoming packet
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Optimizations

* Adopt optimizations from existing network interfaces
v'Offload (or remove) packet fragmentation
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* Adopt optimizations from existing network interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))
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Optimizations

* Adopt optimizations from existing network interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))
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Optimizations

* Adopt optimizations from existing network interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))
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TCP Data Data
4
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Optimizations

* Adopt optimizations from existing network interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))

Without Offloads MCN
TCP Data Data Data
\ 4 \/
[ Data ll Data f ) f
(Data)(Dat) 2@ J | __Data .
Ethernet ( Pkt )[ Pkt ) ( Pkt )[ Pkt | - '
(NIC) [ Pkt ][ Pkt | Pkt J{__Pkt ] There is no NICin MCN and
* thus this step can be
Pkt [ - ] simplified
o ata
Wire
Pkt Pkt
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Optimizations

* Adopt optimizations from existing network interfaces
v'Offload (or remove) packet fragmentation

e Add MCN side DMA

v'In the baseline design, MCN processor manually copies data between the SRAM
buffer and its own DRAM

v'Reduces CPU memcpy overhead

( cPu ) ( cPu )

SRAM DRAM SRAM DRAM

MCN Baseline MCN with DMA
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Optimizations

* Adopt optimizations from existing network interfaces
v'Offload (or remove) packet fragmentation

e Add MCN side DMA

v'In the baseline design, MCN processor manually copies data between the SRAM
buffer and its own DRAM

v'Reduces CPU memcpy overhead

e Other optimizations attempted:
v'Checksum bypassing

o Memory channel is ECC protected

v'MCN DIMM interrupt mechanism
o Leverage ALERT N in the DDR4 standard

Z E Optimizations E E ? >
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* Proof of Concept — Hardware Demonstration
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Proof of Concept Hardware Demonstration

(W
11S00MH898' wn “‘

Stratix V
FPGA

Contutto [2] top view Contutto plugged in IBM POWERS server
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MPI Demonstration

power8@tuleta2-contutto: ~ 1 ) 2:12PM 1%

\

host
= >
o = =
S o @)
S A S
a a
~ a a
@
>
- =
S [a)
> x>
a
a

@

p—

9

y

power8@tuleta2-contutto: ~ 63x13

o

power8@tuleta2-contutto:~$ mpirun --mca btl base warn_component
_unused 0 -np 2 -host power8@nios,tuleta /home/power8/mpihello
300

Hello world from processor tuleta2-contutto, rank 0 out of 2 pr
0cessors

Hello world from processor nios2, rank 1 out of 2 processors
power8@tuleta2-contutto:~$ mpirun --mca btl base warn_component
_unused 0 -np 2 -host power8@nios,tuleta /home/power8/mpisendte
st 300

Machine tuleta2-contutto generated random number: 1804289383
Machine tuleta2-contutto sent 1804289383

processor nios2 got 1804289383

power8@tuleta2-contutto:~$ l

length 0

00:07:21.005542 IP nios.ssh > y700.42860: Flags [.], ack 3239,
win 1246, options [nop,nop,TS val 141004 ecr 216486], length ©
00:07:21.288293 IP nios.ssh > y700.42860: Flags [FP.], seq 3173
, ack 3239, win 1246, options [nop,nop,TS val 141288 ecr 216486
], Length ©

00:07:21.305009 IP y700.42860 > nios.ssh: Flags [.], ack 3174,
win 308, options [nop,nop,TS val 216607 ecr 141288], length 0

MPI application running through MCN

>

POWERS8
(Host)

NIOS I
(Contutto)

Proof of Concept
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e Evaluation

v'Simulation Methodology
v'Bandwidth and Latency

2 E E E Evaluation 2 >



Methodology

e Simulated on dist-gem5 [3]

e Baseline design is only composed of the host system configuration

* Proposed design has 2-8 MCN DIMMs per the host system

e Evaluated with iPerf [4], Ping, Coral [5], Bigdatabench [6], and NPB [7]

CPU ARMv8 Quad Core running @ 2.45GHz CPU ARMVvVS8 Octa Core running @ 3.4GHz
Caches  L1l: 32KB, L1D: 32KB, L2: 1MB Caches  L1l: 32KB, L1D: 32KB, L2: 256KB, L3: 8MB
Memory DDR4-3200 Memory DDR4-3200
OS Ubuntu 14.04 NIC 10GbE/1us link latency

OS Ubuntu 14.04
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Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

mcn-mcn

mcn baseline _ 1.08x

host-mcn

mcn baseline 1.30x
10GbE
0 1

4
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Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

c mcn dma
£
& TSO
(® ]
= )
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£
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2
mch baseline
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Evaluation — Network Bandwidth (iPerf)
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Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth
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Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth
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Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth
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Evaluation — Network Latency (Ping)

Host << MCN MCN << MCN

O010GbE Omcn baseline OTSO Emcndma O010GbE Omcn baseline OTSO ®Emcndma

2.0 - 2.0 -
o
51'5 - 1.5 -
©
1
1.0 81.3% 1.0
N
©
£0.5 - 0.5 - —I
§ _I —I

o L T [Tm | [N

16 128 512 4K 8K 16 128 512 4K 8K
Packet Size (Bytes) Packet Size (Bytes)
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Evaluation — Aggregate Memory Bandwidth

02 04 06 m8 MCN DIMMs

Norm. Aggregate Memory BW
© = N W o 01 O N OO ©

1 T{
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e Conclusion
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Conclusion

* MCN is a novel near-memory processing that:

v'Can run user applications.
v'Requires of the host systems.
v'Supports better of distributed computing.

* We showed a proof-of-concept with hardware demonstration

* MCN can provide:
v'4.56x higher network bandwidth
v'78.1% lower network latency
v'8.17x higher aggregate DRAM bandwidth

than the conventional systems

Z Z Z Z 2 Conclusion >
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MCN Packet Routing

* MCN > MCN
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MCN Packet Routing

* MCN - MCN

application

|

TXlTRX

linux network stack

1

1

1

|

|

1

1

1

1

1

1

|
3 |
3|
O |
T |
—!
1

|

|

|

|

1

1

1

1

1

1

|

|

|

|

1

1

1

1

AN

memory channel

i MCN access i regular access

n Header | Data

DDR memory

N
>

Y

69

1. MCN DIMM writes Ethernet Packet to
its SRAM buffer and set RX-poll bit

user space
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hardware

host
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MCN PaCket Routing 2. Polling agent from the host recognize
the RX-poll bit is set and read the

* MCN = MCN incoming packet
application 1 user space host
X l T RX
A 2
linux network stack o =
B —————————————— O [ 2 Header | Data
i NIC ii MCN driver i kernel space > ‘é‘
iDriver:: forwarding engine || polling agent |’ 2
ke VNe—/—m—/—/——————p—————"!
@)
memcpyIT ¥ =
— >
emory channel 1 S o
1 <
i MCN SsS i regular access hardware = nDc
n Header | Data DDR memory -
Y
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MCN PaCket Routing 3. Forwarding engine checks the MAC

address and determine the destination

* MCN - MCN

application

X lT RX
A

linux network stack

1 user space

kernel space

fvare

| NIC ii MCN driver i
iDriverii forwarding engine || polling agent i
memepy [t I
memory channel 1‘
CN access .
['_I o }//4 MAC: BB.BB.BB.BB.jB.BB

host

Header | Data

DDR4 DIMM

MC-1

DDR4 DIMM
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MCN Packet Routing 4. If this is for another MCN DIMM, it
copies the Ethernet packet to the other

* MCN - MCN MCN DIMM’s SRAM buffer
application 1 user space host
X l T RX
A
=
linux network stack o =
UI | D
------ |f == S=— ST - mm—-m—-———-——--—--——--o N
i NIC ii MCN driver i kernel space > ‘éﬂ
Driverp|forwarding engine || poTing agent | Header | Data
memcpyIT ¥ =

memory channel 1‘

MC-1

CN access MAC: BB.BB.BB.BB.BB.BB pvare
l’"I H /‘4
: eader | Data }/ DDRMemory ‘1'

MCN Architecture



73

MCN PaCket Routing 5. This data copy fires IRQ from the MCN
DIMM and MCN processor knows there

* MCN = MCN is an incoming packet
application 1 user space host
TX l T RX
A
=
linux network stack o =
L.I) | D
—— g <t
i NIC ii MCN driver i kernel space > ‘é‘
iDriver:: forwarding engine || polling agent |’ 2
e JVre/em—m™m™m™ @ ——@/@/}@3MM™—————
@)
memcpyIT ¥ >
— =
memory channel 0 S 2 [ Header | Data
1 <
i MCN access i regular access hardware = nDc
H Header | Data DDR memory o
Y
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Communication latency breakdown

* DMA operation is expensive

* PCl-Express is not designed for extra low latency communication

v 4KB data transfer
o 5us PCle x8 Gen3 vs. 200ns DDR4 MC

* Latency breakdown for a 64B TCP/IP packet

Category Percentage

Link and Switch

NIC

DMA over PCle

Driver

Network Stack Processing

Copy to/from userspace

11.53
2.43
38.05
14.78
25.10
8.10

\

> 52.03%
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MCN Bandwidth

MCN-Host
MCN baseline  MCN-INT MCN-CSUM MCN-JUMBO  MCN-TSO MCN-DMA
7.22 9.41 9.35 9.63 19.22 25.26 33.00
MCN-MCN

MCN baseline

71.22 7.79

MCN-JUMBO
17.02

MCN-TSO
20.90

MCN-DMA
26.08
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